CONSTRUCTION OF A NEW SHUTTLE VECTOR PZT1 APPLICABLE TO HOSTS ESCHERICHIA COLI AND THE ETHANOL PRODUCING ZYMOBMONAS MOBILIS

Luiza Popova, Kaloyan Petrov, Penka Petrova

Abstract. Zymomonas mobilis is a bacterium with high potential to produce ethanol via fermentation of glucose, sucrose or fructose. The need for broadening of its substrate spectrum requires the development of suitable host-vectors systems for gene cloning. Here we report the construction of a new shuttle vector, applicable to hosts Escherichia coli DH5α and Zymomonas mobilis DSM424. It was based on pCR2.1-TOPO™ (E. coli) and contained the amplified and cloned replicon fragment (dso ori and repA gene) of 2.7 kb plasmid of Z. mobilis. As a reporter gene, cloned under Plac promoter control, was used amyBL encoding α-amylase in Bacillus licheniformis strain 44MB82/G. The obtained results revealed good stability of the shuttle vector pZT1 in both hosts, as E. coli DH5α possessed also a high amylase activity due to the extracellular expression of the reporter gene. Z. mobilis DSM424 was able to maintain the shuttle vector, but amyBL was very poorly expressed, thus indicating that Plac promoter is rather not suitable for gene expression in this organism.

Key words: Shuttle vectors, Escherichia coli, Zymomonas mobilis, Amylase

INTRODUCTION

Zymomonas mobilis is a rod-shaped Gram-negative bacterium (Fig. 1), which was originally isolated from alcoholic beverages - the African palm wine, the Mexican ‘pulque’, and also as a contaminant of cider and beer in European countries. However, very shortly after its isolation it is considered as an alternative organism in large-scale fuel ethanol production.

Comparative laboratory and pilot-scale studies on kinetics of batch fermentation of Z. mobilis versus a variety of yeast have indicated the suitability of Z. mobilis over yeasts due to the following advantages: its higher sugar uptake and ethanol yield, its lower biomass production, and its higher ethanol tolerance. In addition, Z. mobilis does not require controlled oxygen supply during the fermentation, and it is suitable for genetic manipulations [1]. The only limitation of Z. mobilis compared to the yeast is that its utilisable substrate range is restricted to glucose, fructose, and sucrose [2].

As a result, early studies on its genetic manipulation focused on extending its substrate range for ethanol production. Skotnicki et al. [3] first reported high frequency conjugal transfer of plasmids from Escherichia coli and Pseudomonas aeruginosa, and this was followed by expression of the lacZ gene and production of β-galactosidase in strains of Z. mobilis [4, 5]. However, the strain ZM6100 derived from this work was shown to progressively lose all plasmid markers in batch culture under non-selective conditions. Subsequently, a new strain, ZM6306, was developed in continuous culture, which showed 100% stability for all plasmid markers when grown without selection pressure. Synthesis of β-galactosidase was induced in continuous culture by addition of lactose and increased ethanol production and unutilized galactose were shown [6].

Further studies to extend the substrate spectrum involved the cloning and expression of a β-glucosidase gene from Xanthomonas albilineans [7] and α-glucosidase gene from a Bacillus sp. [8], however enzyme expression levels were low. Several studies on ethanol production by wild-type strains of Z. mobilis on industrial starch-based raw materials have been reported. For instance, Poosaran et al. [9] evaluated a cassava-derived starch hydrolysate as a substrate.

The present study, aiming at simultaneous saccharification and fermentation of starch, describes a shuttle vector E. coli/Z. mobilis construction and cloning of α-amylase gene of B. licheniformis under Plac promoter control.
MATERIALS AND METHODS

Media and cultivation conditions

E. coli DH5α strain was cultured at 37°C in Luria-Bertani (LB) medium (Scharlau Chemie S.A., Barcelona, Spain). For LB plates 1.5% agar (Oxoid, Thermo Fisher Scientific, Hampshire, UK) was used. The antibiotics ampicillin and kanamycin (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) were added.

Z. mobilis DSM424 was cultured at 30°C, in medium, containing (g/l): yeast extract – 10, bacto peptone – 10, glucose – 20.

The strains were cultivated on a rotary shaker. They were maintained at 4°C, or frozen at -80°C with 20% (w/w) glycerol.

Isolation of genomic and plasmid DNA and PCR

Total genomic DNA was isolated from 24 h-old cells of *Z. mobilis* DSM424 with GeneJET Genomic DNA Purification Kit (Thermo Fisher Scientific Inc., Waltham, USA), following manufacturer’s recommendations.

Plasmid purifications were either by the maxi-preparative alkaline procedure (Sambrook and Russel 2001) or by GeneJET Plasmid Miniprep Kit (Thermo Fisher Scientific Inc.).

For PCR amplification of ori/rep region of *pZM2* of *Z. mobilis* was used primer pair F 5’GTCTAGACCTGCCTTATCTTTTCCCCAG3’ and R’GTTCAATCTAGACAAACCTAAAGATTTGCA TAGTTCGGC3’ with introduced XbaI site (underlined). For PCR amplification, PCR mixture of GeneAmp® High Fidelity PCR System (Applied Biosystems, CA, USA) in total volume 50 μl, at final concentrations of primers 0.5 pmol/μl and template genomic DNA of *B. licheniformis* 44MB82/G - 2 ng/μl.

PCR was performed in QB-96 Satellite Gradient thermal cycler (LKB Vertriebs GmbH, Vienna, Austria) under the following temperature profile: 94°C for 3.5 min, 35 cycles consisting of 94°C for 1 min, 55°C for 45 sec, 72°C for 2 min, followed by final elongation at 72°C for 5 min. The corresponding PCR products were visualized in 1% agarose gel.

Plasmid construct pCRamyBL, containing amylase encoding gene of *Bacillus licheniformis* was obtained previously [10].

Bacterial transformation and amylase secretion assay

For *E. coli* DH5α transformation was used TransformAid™ bacterial transformation Kit (Fermentas, Thermo Fisher Scientific Inc).

The transformation of *Z. mobilis* was by electroporation in buffer, containing 0.3 M sucrose and 0.2 mm cuvettes, using BioRad Micropulser. The successful pulse parameters were 2.9 mV and 5.4 msec.

Qualitative analysis of the ability of transformants to secrete amylase was performed at LB-plates, containing 0.5% soluble starch. After 24 h of cultivation at 37°C, the colonies were exposed to iodine vapours. Clear yellow color zones surrounded the positive clones.

RESULTS AND DISCUSSION

Zymomonas mobilis is an ethanol-producing bacterium currently considered a major candidate organism for bioethanol production. The main problem of the species from biotechnological point of view lies in its inability to convert complex carbohydrate polymers like starch to ethanol. To solve this problem, genetic manipulation of *Z. mobilis* DSM424 for broadening the utilizable range of substrates has been attempted.

To be stably maintained, every shuttle vector must contain ori (double stranded origin) and rep-genes, typical for the different hosts – *E. coli* and *Z. mobilis* and insuring the plasmid replication.

Successful bifunctional construct was obtained by insertion of 1016 bp fragment carrying *dso* and *rep*-genes, typical for the different hosts – *E. coli* and *Z. mobilis* into XbaI site of pCRamyBL vector (Fig. 2). The obtained shuttle construct was named pZT1 (Fig. 3).

The recombinant clones were selected in *E. coli* host by their resistance to ampicillin (50μg/ml). After isolation of plasmid DNA and restriction analysis, several *E. coli* DH5α clones were selected for further analysis – XbaI treatment (Fig. 4A) and sequencing. They were used for transformation of *Z. mobilis* DSM424.

For selection of positive *Z. mobilis* clones was used their resistance to kanamycin (200 μg/ml). By the reason that the strain contained several native plasmids, XbaI digest would be non-informative. Therefore, the presence of pZT1 in this host was proved by PCR amplification of *amyBL* gene with a template total plasmid content of the respective clone (Fig. 4, B). The obtained results revealed the presence and stability of the shuttle vector pZT1 in both hosts.
Fig. 2. Cloning scheme. The region, containing *dso* and *rep*-gene of the plasmid pZM2 (2749 bp) of *Z. mobilis* was inserted into *XbaI* site of pCRamyBL vector.

Fig. 3. Structural map of the shuttle vector pZT1.

Fig. 4. Analysis of the recombinant clones in *E. coli* and *Z. mobilis*.

A) pZT1, isolated from *E. coli* DH5α and digested with *XbaI*.

B) PCR amplification of pZT1-containing plasmid DNA isolations from *Z. mobilis* clones.
Fig. 5. *E. coli* DH5α recombinant colonies, cultured on starch-agar plates. Clear haloes surround the positive clones.

The subsequent analysis of the expression of amylase-encoding reporter gene showed that *E. coli* DH5α was able to produce great amount of extracellular amylase, evident by yellow haloes around colonies (Fig. 5).

Z. mobilis recombinants grew well on starch-containing media, but showed clearing only behind the colonies. The gene *amyBL* was very poorly expressed, thus indicating that *Plac* promoter is rather not suitable for gene expression in this organism. However, the stable maintenance of pZT1 in *Z. mobilis* made it good shuttle vector platform for cloning of powerful promoters, deriving from this host.

Acknowledgments: The authors thank to the National Science Fund, Republic of Bulgaria, as this work was financially supported by the Research grant DFN E02/16.

References:

Векторът е произведен на pCR2.1-TOPO™ (E. coli) и съдържа амплифициран и клониран (dso ori и repA gene) на 2.7 kb плазмид на Z. mobilis. Като репортерен ген в совалката под контрола на промотора Plac е клониран генът amyл, кодиращ α-амилаза в Bacillus licheniformis щам 44MB82/G. Получените резултати показват добра стабилност на совалковия вектор pZT1 и в гостоприемника, като при E. coli DH5α се наблюдава и сила амилазна активност поради успешната извънклетъчна експресия на репортерния ген. Zymomonas mobilis DSM 424 поддържа pZT1 в клетката, но не се наблюдава амилазна активност, което показва, че промоторът Plac не е подходящ за гена експресия в този микроорганизъм.

Ключови думи: совалкови вектори, Escherichia coli, Zymomonas mobilis, амилаза

Луиза Попова
Институт по инженерна химия, БАН, София, ул. „Аkad. Г. Бончев”, бл. 103
tел: +359 2 9793234
fax: +359 2 8707523
e-mail: popovalg14@gmail.com

Проф. д-р Калоян Петров
Институт по инженерна химия, БАН, София, ул. „Акад. Г. Бончев”, бл. 103
tел: +359 2 8719121
fax: +359 2 8707523
e-mail: kaloian04@yahoo.com

Доц. д-р Пенка Петрова
Институт по микробиология „Степфан Ангелов”, БАН, София, „Акад. Г. Бончев”, бл. 26, тел: +359 2 9793179
fax: +359 2 8700109
e-mail: pepipetrova@yahoo.com

Luiza Popova
Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia, Acad. G. Bontchev str. bl. 103
phone: +359 2 9793234
fax: +359 2 8707523
e-mail: popovalg14@gmail.com

Prof. Kaloyan Petrov, PhD
Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia, Acad. G. Bontchev str. bl. 103
phone: +359 2 8719121
fax: +359 2 8707523
e-mail: kaloian04@yahoo.com

Assoc. Prof. Penka Petrova, PhD
The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Acad. G. Bontchev str. bl. 26, phone: +359 2 9793179
fax: +359 2 8700109
e-mail: pepipetrova@yahoo.com